The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution--basic principles and a simple heuristic description.

نویسندگان

  • Barak Morgan
  • Ori Lahav
چکیده

The spontaneous chemical oxidation of Fe(II) to Fe(III) by O(2) is a complex process involving meta-stable partially oxidized intermediate species such as green rusts, which ultimately transform into a variety of stable iron oxide end-products such as hematite, magnetite, goethite and lepidocrocite. Although in many practical situations the nature of the end-products is of less interest than the oxidation kinetics, it is difficult to find in the literature a description of all the basic steps and principles governing the kinetics of these reactions. This paper uses basic aquatic-chemistry equilibrium theory as the framework upon which to present a heuristic model of the oxidation kinetics of Fe(II) species to ferric iron by O(2). The oxidation rate can be described by the equation (in units of mol Fe(II)/(l min)): -d[Fe(2+)]/dt = 6 x 10(-5)[Fe(2+)]+1.7[Fe(OH)(+)]+4.3 x 10(5)[Fe(OH)(2)(0)]. This rate equation yields a sigmoid-shaped curve as a function of pH; at pH values below approximately 4, the Fe(2+) concentration dominates and the rate is independent of pH. At pH> approximately 5, [Fe(OH)(2)(0)] determines the rate because it is far more readily oxidized than both Fe(2+) and FeOH(+). Between pH 5 and 8 the Fe(OH)(2)(0) concentration rises steeply with pH and the overall oxidation rate increases accordingly. At pH values> approximately 8 [Fe(OH)(2)(0)] no longer varies with pH and the oxidation rate is again independent of pH. The paper presents a heuristic overview of the pH dependent kinetics of aqueous ferrous oxidation by O(2(aq)) which we believe will be useful to professionals at both research and technical levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Basic Dye Bromophenol Blue from aqueous solution by Electrocoagulation using Al – Fe Electrodes: Kinetics, Equilibrium and Thermodynamics Studies.

Electrocoagulation (EC) in a batch cell with Al anode and Fe cathode in monopolar parallel (MP) connection was used for the removal of basic dye, Bromophenol Blue (BPB). The effects of current density, pH, temperature and initial dye concentration, on the process were investigated. Equlibrium data were analyzed using four model equations: Langmuir, Freudlinch, Temkin and Dubinin–Radushkevich. D...

متن کامل

Decolorization of Cationic and Anionic Textile Blue Dyes from Aqueous Solution with Advanced Oxidation Process Using H2O2 and Various Catalysts

In this study, we used advanced oxidation process (AOP)for the removal of a cationic and anionic blue dyes, namely Basic Blue 3 (BB3) and Acid blue 62(AB62), from aqueous solutions. Fenton reactions are mixture of H2 O2 and Fe2+. However this paper investigates the application of twelve different catalysts such as: FeCl2 , FeSO4, (NH4 )Fe(SO4 )2 , FeCl3 , Nano iron (Fe0 ), Fe(NO3 )3 , K2FeO4 , ...

متن کامل

Response Surface Methodology Optimization of Cobalt (II) and Lead (II) Removal from Aqueous Solution Using MWCNT-Fe3O4 Nanocomposite

The present investigation describes the evaluation of feasibility of MWCNT-Fe3O4 nanocomposite toward adsorptive removal of Co(II) and Pb(II) from aqueous solution in batch mode. The Fe3O4–MWCNT hybrid was prepared using a simple one-pot strategy via in situ growth of Fe3O4 magnetic nanoparticles onto the surface of the MWCNT...

متن کامل

Adsorption Behavior of Cu(II) in Aqueous Solutions by SQD-85 Resin

The adsorption and desorption properties of SQD-85 resin for Cu(II) had been investigated. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e. initial pH, contact time and temperature. The results show that the optimal pH for the adsorption was 5.99 in the HAc-NaAc system, and the maximum adsorption capacity was estimated to 324 mg/g a...

متن کامل

The kinetics of the removal of copper ions from aqueous solutions using magnetic nanoparticles supported on activated carbon

Removal of Cu(II) from aqueous solution supplies is possible through the process of adsorption. One of these processes involves the preparation of magnetic nanoparticles on activated carbon (AC). Adsorbed coppre ions on the surface of Fe3O4-AC are separated from aqueous solutions using external magnetic fields. In the present study, magnetic nanoparticles were synthesized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 68 11  شماره 

صفحات  -

تاریخ انتشار 2007